
BAILSEC.IO

OFFICE@BAILSEC.IO

X: @BAILSECURITY

TG: @HELLOATBAILSEC

FINAL REPORT:

Stader Labs
bnbX
July 2024

bailsec.io 1

Disclaimer:

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in this
report should not be considered a comprehensive list of security issues, flaws, or defects in the
target system or codebase.

The content of this assessment is not an investment. The information provided in this report is
for general informational purposes only and is not intended as investment, legal, financial,
regulatory, or tax advice. The report is based on a limited review of the materials and
documentation provided at the time of the audit, and the audit results may not be complete or
identify all possible vulnerabilities or issues. The audit is provided on an "as-is," "where-is," and
"as-available" basis, and the use of blockchain technology is subject to unknown risks and flaws.

The audit does not constitute an endorsement of any particular project or team, and we make
no warranties, expressed or implied, regarding the accuracy, reliability, completeness, or
availability of the report, its content, or any associated services or products. We disclaim all
warranties, including the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement.

We assume no responsibility for any product or service advertised or offered by a third party
through the report, any open-source or third-party software, code, libraries, materials, or
information linked to, called by, referenced by, or accessible through the report, its content, and
the related services and products. We will not be liable for any loss or damages incurred as a
result of the use or reliance on the audit report or the smart contract.

The contract owner is responsible for making their own decisions based on the audit report and
should seek additional professional advice if needed. The audit firm or individual assumes no
liability for any loss or damages incurred as a result of the use or reliance on the audit report or
the smart contract. The contract owner agrees to indemnify and hold harmless the audit firm or
individual from any and all claims, damages, expenses, or liabilities arising from the use or
reliance on the audit report or the smart contract.

By engaging in a smart contract audit, the contract owner acknowledges and agrees to the
terms of this disclaimer.

bailsec.io 2

1. Project Details

Important:
Please ensure that the deployed contract matches the source-code of the last commit hash.

Project

Stader Labs - bnbX

Website staderlabs.com

Language Solidity

Methods Manual Analysis

Github repository https://github.com/stader-
labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1
d/contracts/StakeManagerV2.sol

Resolution 1 https://github.com/stader-
labs/bnbX/blob/1445cb1917ace80d11627ff85a8815b2e8465b53
/contracts/StakeManagerV2.sol

Resolution 2 https://github.com/stader-
labs/bnbX/blob/51b09e626dfc2acd7ee2a5d2fd6936f35731c70a
/contracts/StakeManagerV2.sol

Resolution 3 https://github.com/stader-
labs/bnbX/tree/aee951c5477fa8091f25386980fddeac905f9e20
/contracts

https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol
https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol
https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol
https://github.com/stader-labs/bnbX/blob/1445cb1917ace80d11627ff85a8815b2e8465b53/contracts/StakeManagerV2.sol
https://github.com/stader-labs/bnbX/blob/1445cb1917ace80d11627ff85a8815b2e8465b53/contracts/StakeManagerV2.sol
https://github.com/stader-labs/bnbX/blob/1445cb1917ace80d11627ff85a8815b2e8465b53/contracts/StakeManagerV2.sol
https://github.com/stader-labs/bnbX/blob/51b09e626dfc2acd7ee2a5d2fd6936f35731c70a/contracts/StakeManagerV2.sol
https://github.com/stader-labs/bnbX/blob/51b09e626dfc2acd7ee2a5d2fd6936f35731c70a/contracts/StakeManagerV2.sol
https://github.com/stader-labs/bnbX/blob/51b09e626dfc2acd7ee2a5d2fd6936f35731c70a/contracts/StakeManagerV2.sol

bailsec.io 3

2. Detection Overview

Severity

Found

Resolved

Partially
Resolved

Acknowledged
(no change made)

High 4 4

Medium 4 3 1

Low 3 2 1

Informational 3 1 2

Governance 1 1

Total 15 10 5

2.1 Detection Definitions

Severity

Description

High The problem poses a significant threat to the confidentiality of a
considerable number of users' sensitive data. It also has the
potential to cause severe damage to the client's reputation or result
in substantial financial losses for both the client and the affected
users.

Medium While medium level vulnerabilities may not be easy to exploit, they
can still have a major impact on the execution of a smart contract.
For instance, they may allow public access to critical functions,
which could lead to serious consequences.

Low Poses a very low-level risk to the project or users. Nevertheless the
issue should be fixed immediately

Informational Effects are small and do not post an immediate danger to the
project or users

Governance Governance privileges which can directly result in a loss of funds or
other potential undesired behavior

bailsec.io 4

2. Detection

OperatorRegistry

The OperatorRegistry is a simple registry contract that keeps track of all involved operator
addresses, storing them in an enumerableSet. An operator address is corresponding to a
validator in the StakeHub contract and will be used to delegate BNB towards it.	

Any address with the DEFAULT_ADMIN_ROLE can add, remove and set a preferred
deposit/withdrawal operator.

This contract employs OpenZeppelin’s AccessControlUpgradeable library for access control
purposes.

Privileged Functions:

• grantRole
• revokeRole
• setPreferredDepositOperator
• setPreferredWithdrawalOperator
• togglePause

Issue_13 Usage of floating pragma is discouraged

Severity Informational

Description A strict pragma specifies a particular compiler version to compile the
smart contract. This ensures that the contract is always compiled with
the same version, avoiding any unexpected behaviors or bugs
introduced in newer compiler releases. Compiler updates can
sometimes introduce changes that alter the way contracts are
interpreted or executed, potentially opening up security vulnerabilities
if not adequately tested.

Recommendations Consider using a strict pragma version.

Comments /
Resolution

Resolved.

bailsec.io 5

StakeManagerV2

Bailsec was tasked with a re-audit of the StakeManagerV2 because the contract was refactored,
the commit to audit is the following:

https://github.com/stader-
labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.s
ol

This will be a completely new audit and will disregard all information from the past audit.

The StakeManagerV2 is the entry contract which allows users to provide BNB and receive
BNBx. The received BNBx amount is determined by the rule of three, which is widely known
from vault implementations:

bnbAmount * totalShares / totalDelegated

In that calculation these parameters are defined as follows:

- bnbAmount: The provided BNB amount by the staker
- totalShares: Existing supply of BNBx
- totalDelegated: Amount of BNB delegated to operators (since last update)

This means that users will receive a BNBx amount based on their pro-rata contribution on the
overall BNB in the system. The delegation can happen to a pool of operators whereas it will
always delegate it to the preferred operator as determined within the OperatorRegistry. This can
however be changed by governance.

The main purpose for users to stake their BNB is the price appreciation of BNBx, which is mainly
driven by staking rewards but can also be incentivized through the owner via the
delegateWithoutMinting function. The mechanism which is responsible for the price
appreciation is the increase of the amount of pooled BNB through all operators. There are two
notable things to mention about the price appreciation:

https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol
https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol
https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol

bailsec.io 6

a) It is not handled automatically but only manually whenever the updateER function is
triggered

b) A part of the price-appreciation is taken as fee and minted to the Stader Treasury as
BNBx

Users can burn their BNBx and receive BNB through a withdrawal queue. We will quickly
explain the flow:

a) Alice invokes the requestWithdraw function with the amount of BNBx she wants to
redeem for BNB. This will push a new withdrawalRequest into the withdrawalRequests
array.

b) Governance invokes the startBatchUndelegation function which will subsequently fetch
elements in the withdrawalRequest and creates a new batchWithdrawalRequest that
aggregates a certain amount of requests (determined by _batchSize). The sum of these
requests is then undelegated from the STAKE_HUB and will be claimable 7 days later.

c) After 7 days, anyone can invoke the completeBatchUndelegation function which claims
the latest batch request from the STAKE_HUB. This marks the point where users can start
claiming their withdraw requests.

d) Users can now claim their requests (which are allocated to the claimed batch request) via
the claimWithdrawal function.

Privileged Functions:

- startBatchUndelegation
- redelegate
- forceUpdateER
- delegateWithoutMinting
- pause
- unpause
- setStaderTreasury
- setFeeBps
- setMaxActiveRequestsPerUser
- setMaxExchangeRateSlippageBps

bailsec.io 7

Issue_01
Governance Privilege: Users are completely dependent on the
operator to withdraw funds

Severity Governance

Description To withdraw funds, users must first call the contract to initiate a
request. Then, the operator calls the contract to process the user's
request. If the operator does not invoke the startBatchUndelegation
function, users will be unable to withdraw their funds.

Moreover, the contract is under an upgradeable proxy which can
result in a total loss of funds if the proxy admin key is compromised.

Recommendations Consider incorporating a Gnosis Multisignature contract as owner and
ensuring that the Gnosis participants are trusted entities.

Comments /
Resolution

Acknowledged.

Issue_02
Blunder within claimWIthdrawal allows users to immediately claim
requested withdrawals

Severity High

Description The claimWithdrawal function allows users to claim their fulfilled
requests.

It executes a check if the request has already been claimed and
fetches the corresponding batchWithdrawalRequest. The problem is
that requests will initially always point to batchId = 0 upon request
creation and the batchId = 0 is actually a valid created batch request
(it is the very first created batch request):

https://github.com/stader-
labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/con

https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol#L115
https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol#L115

bailsec.io 8

tracts/StakeManagerV2.sol#L115

Therefore, the isClaimable check will never revert and users can claim
their unprocessed requests. This will result in several down-stream
issues.

Recommendations Consider checking if the withdrawalRequest has actually been
processed:

https://github.com/stader-
labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/con
tracts/StakeManagerV2.sol#L373

Comments /
Resolution

Resolved, two changes have been implemented:

> default batchId is now uint256.max
> processing is checked upon claimWithdrawal

Issue_03
`startBatchUndelegation` fails when processing the last element of the
`withdrawalRequests` queue

Severity High

Description The `startBatchUndelegation` function calls `_computeBnbXToBurn` to
calculate the amount of shares that need to be undelegated. The
`_computeBnbXToBurn` function iterates through the
`withdrawalRequests` queue until the following condition is not met.

```solidity 
        while ( 
            (processedCount < _batchSize) && (firstUnprocessedUserIndex 
< withdrawalRequests.length) 
                && (cummulativeBnbToWithdraw <= pooledBnb) 
        ) { 
            amountInBnbXToBurn = cummulativeBnbXToBurn; 

https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol#L115
https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol#L373
https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol#L373
https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManagerV2.sol#L373


 

bailsec.io   9 

            withdrawalRequests[firstUnprocessedUserIndex].processed = 
true; 
            withdrawalRequests[firstUnprocessedUserIndex].batchId = 
batchWithdrawalRequests.length; 
            processedCount++; 
            firstUnprocessedUserIndex++; 
            // below line won't end up in infinite loop, these checks will 
stop it 
            // (processedCount < _batchSize) && 
(firstUnprocessedUserIndex < withdrawalRequests.length) 
            cummulativeBnbXToBurn += 
withdrawalRequests[firstUnprocessedUserIndex].amountInBnbX; 
            cummulativeBnbToWithdraw = 
convertBnbXToBnb(cummulativeBnbXToBurn); 
        } 
``` 

When `firstUnprocessedUserIndex` is `withdrawalRequests.length-1`,
the last member of `withdrawalRequests` will be processed in the loop.
However, `firstUnprocessedUserIndex` will be accumulated again in the
loop and used as an index to access `withdrawalRequests`. This will fail
due to array out-of-bounds access.

This results in a failure if the withdrawal batch contains the last
member of `withdrawalRequests`.

Recommendations If `firstUnprocessedUserIndex >= withdrawalRequests.length`, use
`break` to end the loop.

Comments /
Resolution

Resolved, the logic has been refactored and is now as follows:

> enter the while loop as long as we are below _batchSize and still
have outstanding requests
> aggregate desired BNBx amount from request
> convert it to corresponding BNB amount
> break if credit contract has insufficient BNB to cover request

bailsec.io 10

> set return value
> mark request as processed
> increment markers

Issue_04
Edge-case during redelegation may allow malicious user to
permanently brick withdrawals

Severity High

Description The redelegation flow will decrease the underlying BNB amount
because a fee is taken on this procedure. If this is executed a few
times, it is possible for the exchange rate to become negative (<1e18).

If the exchange rate ever becomes negative, a user can simply request
many withdrawals with 1 wei through different wallets. Due to the fact
that the startBatchUndelegation is limited to a reasonable looping size,
it is not possible to loop over thousands of iterations. If now the
exchange rate is <1e18 by some means, this will result in 100wei of
BNBx to eventually become zero BNB, thus resulting in zero shares as
parameter for the undelegate function. This will result in a revert and
will permanently DoS the withdrawal flow.

Recommendations Consider setting a reasonable lower limit for withdrawal requests.

Comments /
Resolution

Failed resolution: Redelegations will never work for any BNB amount
< 5_000 BNB.
While it is now ensured that the caller must provide a msg.value to
counter any potential loss, the minimum delegation value of 1e18 was
ignored:

if (bnbAmount < minDelegationBNBChange) revert
DelegationAmountTooSmall();

If we now consider the following check:

bailsec.io 11

if (msg.value != getRedelegationFee(_amount)) revert
RedelegationFeeMismatch();

function getRedelegationFee(uint256 _amount) public view returns
(uint256) {

return (_amount * STAKE_HUB.redelegateFeeRate()) /
STAKE_HUB.REDELEGATE_FEE_RATE_BASE();

}

redelegateFeeRate = 2
REDELEGATE_FEE_RATE_BASE = 100_000

The redelegation fee for 100 BNB would be as follows:

100e18 * 2 / 100_000e18 = 2e15

It would therefore never work to redelegate BNB, only once the
redelegationFee becomes 1e18, which is the case if BNB amount is
50_000.

Due to the fact that redelegations don’t work anymore, this will
increase the “Architectural issue can result in funds being locked
in the contract” issue from low to high.

We recommend removing this check.

Resolution 3: The msg.value attachment of the function has been
removed. This issue is considered as fixed.

bailsec.io 12

Issue_05
Users may fail to claim because `completeBatchUndelegation` may
result in less BNB than expected

Severity High

Description The `startBatchUndelegation` function calls `getSharesByPooledBNB` to
convert the BNB amount into the operator’s shares, and then
undelegate the corresponding shares. The `getSharesByPooledBNB`
function will round down, which may cause the
`STAKE_HUB.undelegate` function to unlock less BNB than expected.

Then, the `completeBatchUndelegation` function calls
`STAKE_HUB.claim`, and the BNB obtained is less than
`batchRequest.amountInBnb`. When the user claims, it will fail due to
insufficient BNB.

For example, suppose the operator's exchange rate is `1.2`. The
`startBatchUndelegation` function expects to unlock `1e18` BNB, then
the corresponding shares from `getSharesByPooledBNB` is `1e18 / 1.2 =
833333333333333333`. The `STAKE_HUB.undelegate` function
unlocks `833333333333333333 * 1.2 = 999999999999999999` BNB.
However `batchRequest.amountInBnb` is still `1e18`. When a user
claims, it will fail due to insufficient BNB.

This issue was already raised in the first iteration.

Recommendations Since this issue is now also present in the second instance, we
distance us from providing a code-based recommendation and rather
recommend transferring some dust amount < 0.1 BNB directly to the
contract (implement fallback) which then covers the worst-case
discrepancy

Comments /
Resolution

Resolved, the logic has been changed as follows:

> calculate shares for desired BNB amount
> calculate received BNB amount for shares

bailsec.io 13

> use the result from above and set it to amountInBnb

Issue_06 Architectural issue can result in funds being locked in the contract

Severity Medium

Description `StakeManagerV2` can delegate to multiple operators. Users will first
delegate to the `preferredDepositOperator`. The admin controls the
number of delegates for each operator by changing the
`preferredDepositOperator`. The BNB assets held by BNBX are the sum
of the delegates of all operators.

If a user holds a large amount of BNBX, these BNBX correspond to the
BNB of multiple operator delegates. When the user initiates a
withdrawal, there may not be a single operator whose delegate
quantity can meet the withdrawal requirements. This will cause the
withdrawal to be unable to be processed and block the withdrawal
queue.

Illustrated:

a) Alice deposits 100e18 BNB which is delegated to OP 1, Alice
receives 100e18 BNBx

b) Bob deposits 200e18 BNB which is delegated to OP1, Bob
receives 200e18 BNBx

c) PreferredDepositorOperator is changed to OP 2
d) Charles deposits 70e18 BNB which is delegated to OP2,

Charles receives 70e18 BNBx
e) Alice and Charles request a withdrawal, both withdrawals are

batched into one batchWithdrawalRequest and taken from
operator 1

f) After this request has been fulfilled, the following amounts are
delegated: Operator 1 = 130e18; Operator 2 = 100e18

g) Bob requests a withdrawal for his 200e18 tokens

bailsec.io 14

h) The withdrawal process is now bricked because this request
cannot be honored (the operator has insufficient delegated
BNB).

Fortunately, the owner can redelegate funds from Operator 2 to
Operator 1 which then re-enables the processing.

Recommendations Consider being very strict when working with different operators to
ensure such discrepancies can never happen.

There is no trivial code-sided solution for this problem.

Comments /
Resolution

Acknowledged, however, due to the issue with redelegation, this issue
will now be considered as high instead of medium.

Resolution 3: This has been fixed

Issue_07
Malicious users can temporarily brick the queue by sybil’ing the
maxActiveRequestsPerUsers

Severity Medium

Description In the previous audit we have recommended to implement a limit per
user but also a lower threshold for amounts.

The lower threshold was not implemented which means that users can
simply create a script that seeds thousands of wallets and calls the
requestWithdrawal function with 1 wei to artificially increase the length
of the withdrawalRequests array.

This means that governance needs to invoke the startBatchDelegation
function until the queue is being emptied.

The problem is that the queue can become very,very large, which then

bailsec.io 15

effectively breaks withdrawals for a long time.

Recommendations Consider setting a reasonable lower limit of how much BNBx can be
burned.

Comments /
Resolution

Resolved.

Issue_08 Lack of ER update allows users to flash-theft tokens

Severity Medium

Description The `StakeManagerV2` contract uses `totalDelegated / totalSupply` as
the exchange rate, where `totalDelegated` consists of two parts: the
BNB staked by the user and the BNB earned from staking. The former
is updated in real time every time BNBX is minted and burned, while
the latter is updated by externally calling the `updateER` function.

If the `updateER` function is not called externally, the exchange rate
will lag behind. Users may use this to steal the staking income.

For example, suppose that the current `totalDelegated` and
`totalSupply` are both `1e18`.

1. After a period of time, the total value of the stake increases to
`1.2e18` BNB, but `updateER` is not called during this period

2. UserA stakes `1e18` BNB and gets `1e18` BNBX, `totalDelegated`
and `totalSupply` become `2e18`

3. UserA calls `updateER` to synchronize the staking income, and

`totalDelegated` increases to `2.2e18`

4. UserA's `1e18` BNBX is now worth `1.1e18` BNB

bailsec.io 16

Similarly, this would result in users receiving less funds than they
should if the ER is not updated before the startBatchUndelegation
function.

Recommendations Consider updating the ER at the beginning of these functions.

Comments /
Resolution

Acknowledged: During delegate, the ER is not updated, which means
users can simply deposit, update the ER and then receive more tokens
back than they initially provided. Depending on the time since the last
update, this can result in a huge gain for an exploiter.

The ER should be updated at the beginning of the delegate function as
well.

Stader comment: As there is a 7-day withdrawal delay, the attacker's

funds would also be locked without generating any yield, making this
attack not beneficial to the attacker. Hence, we believe this shouldn't be

an issue. Additionally, it could significantly increase the gas barrier for

the delegate, as updateER is expensive.

Issue_09 setFeeBps function will alter fee in hindsight

Severity Medium

Description The setFeeBps function allows governance to change the fee which is
taken on rewards. Due to the fact that the ER is not updated
beforehand, such an update may alter the fee in hindsight.

If for example the ER was not updated for 1 week and the fee was 5%,
the fee can now be updated to 50%. However, this 50% will now
apply on the whole past week.

Recommendations Consider updating the ER before the fee is updated.

bailsec.io 17

Comments /
Resolution

Resolved.

Issue_10
Users may lose anticipated funds if redelegation happens after a
withdrawal has been requested

Severity Low

Description Whenever users request a withdrawal, there is absolutely no way to
cancel this withdrawal again. If a redelegation of funds happens after a
withdrawal has been requested this will decrease the underlying BNB
amount and results in these requests receiving less BNB as initially
expected.

Recommendations Consider communicating such a redelegation one week before with
the community.

Comments /
Resolution

Resolved, this issue has been inherently resolved due to the fact that a
msg.value must be provided with the redelegation. However, the issue
which was introduced within the redelegation flow must be fixed.

Issue_11 Dust may remain within operators

Severity Low

Description As already explained, the withdrawal amount from operators will round
down whenever the share value is determined. This may result in
leftover amounts being stuck in the operator.

Recommendations Since this issue was also present in the previous iteration, we do not
recommend any further code change. If we incorporate the new logic
into the context, the last user may just not be able to redeem a few wei
of shares.

bailsec.io 18

Comments /
Resolution

Acknowledged.

Issue_12
Incorrect NATSPEC about access control for
completeBatchUndelegation

Severity Low

Description The NATSPEC for this function indicates that it should solely be
callable by the operator:

/// @dev This function can only be called by an address with the
OPERATOR_ROLE.

This is however not the case.

Recommendations Consider removing this comment or implementing an access control
mechanism.

Comments /
Resolution

Resolved.

Issue_13 The boosting rewards may be arbitraged

Severity Informational

Description The `delegateWithoutMinting` function has two uses:

1. Migrate assets from `StakeManager` to `StakeManagerV2`
2. Admins donate BNB to `StakeManagerV2` to increase rewards

This function, when used to increase rewards, can be used by
attackers for arbitrage because it will immediately increase the

bailsec.io 19

exchange rate. Once the attacker finds the `delegateWithoutMinting` tx
in the memory pool, he can mint BNBX in advance. After the
`delegateWithoutMinting` tx is executed, the value of his BNBX will
immediately increase.

Recommendations Consider either accepting this risk and staying reasonable with one-
time reward boosting or implement a mechanism which linearly vests
these rewards. The latter scenario needs additional validation.

Comments /
Resolution

Acknowledged.

Issue_14 Treasury fee will be slightly larger after share minting

Severity Informational

Description In the scenario where the treasury fee is not 100%, the mathematical
calculation will result in the fee becoming slightly larger due to the fact
that the pooled bnb value is used for the arithmetic operation.

Illustrated:

BNBx.supply = 100e18
totalDelegated = 100e18
underlyingBNB = 110e18
feeBps = 5000

Therefore, there is currently an unupdated profit of 10e18.

a) Calculate the feeInBnb:
 -> (totalPooledBnb - totalDelegated) * feeBps / 10000
 -> (110e18 - 100e18) * 5000 / 10000
 -> 5e18

b) Convert this bnb amount to the corresponding share value:

bailsec.io 20

-> 5e18 * 100e18 / 100e18
-> 5e18

c) After the update, calculate the value of these 5 minted shares:
 -> 5e18 * 110e18 / 105e18
 -> 5.23e18

The treasury effectively received 0.23e18 more shares than expected.

Recommendations There are three points to consider:

a) This action is in favor of the protocol
b) The math works correct if the fee is 100%
c) This is likely a design choice

Therefore, we are the decision that the math should not be adjusted
and this issue can be safely acknowledged.

Comments /
Resolution

Acknowledged.

bailsec.io 21

StakeManager

Bailsec was tasked with a trivial check for the migrateFunds function in the StakeManager. The
function in question can be found in the following diffcheck:
https://www.diffchecker.com/O2JRmIWx/

https://github.com/stader-
labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManager.sol
#L336

This function simply allows any address with the DEFAULT_ADMIN_ROLE to withdraw BNB in
the size of “depositsInContract”. This value trivially represents how much BNB is sitting in the
contract and was not yet delegated.
Delegated funds cannot be transferred out by this function.

Additionally it needs to be mentioned that this function can be called multiple times. Therefore
we just recommend adding a parameter which simply allows the caller to specify how much
funds should be exactly withdrawn. This will increase flexibility.

https://www.diffchecker.com/O2JRmIWx/
https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManager.sol#L336
https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManager.sol#L336
https://github.com/stader-labs/bnbX/blob/2bba18c23cf0b2fdf03e80be7cd0976479bb3d1d/contracts/StakeManager.sol#L336

	Stader BNBx titel
	Bailsec - Stader Labs bnbX - Final Report

