
Security Audit Report for
NearX Exchange Rate Feed Contract
and NearX Aurora Staking Contract

Date: October 13, 2022

Version: 1.0

Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

1 Introduction 1
1.1 About Target Contracts . 1

1.2 Disclaimer . 2

1.3 Procedure of Auditing . 2

1.3.1 Software Security . 2

1.3.2 DeFi Security . 3

1.3.3 NFT Security . 3

1.3.4 Additional Recommendation . 3

1.4 Security Model . 3

2 Findings 5
2.1 DeFi Security . 5

2.1.1 Missed Sanity Check on the Withdrawal wNear . 5

2.1.2 Missed Sanity Check on nearXSwapLockPeriod . 7

2.2 Additional Recommendation . 7

2.2.1 Missed Sanity Check in set_owner() . 7

2.2.2 Missed Sanity Check in get_aurora_contract_address() 9

2.2.3 Missed Sanity Check When Setting Privileged Accounts 9

2.2.4 Meaningless Event Emission . 11

2.2.5 Lack of Event Emission in call_aurora() . 12

2.2.6 Improper Usage of the Macro #[private] . 13

2.2.7 Potential Centralization Problem (I) . 14

2.2.8 Potential Centralization Problem (II) . 14

2.2.9 Check Zero Address in setAuroraNearXRateAddress() 15

2.2.10 Follow the Check-Effect-Interactions Best Practice 15

2.2.11 Unused State Variable . 16

2.3 Notes . 16

2.3.1 Delayed NearX Rate . 16

2.3.2 Timely Pushing the NearX Rate . 16

i

Report Manifest

Item Description
Client Stader Labs

Target
NearX Exchange Rate Feed Contract
NearX Aurora Staking Contract

Version History

Version Date Description
1.0 October 13, 2022 First Release

About BlockSec The BlockSec focuses on the security of the blockchain ecosystem and collaborates

with leading DeFi projects to secure their products. BlockSec is founded by top-notch security researchers

and experienced experts from both academia and industry. They have published multiple blockchain se-

curity papers in prestigious conferences, reported several zero-day attacks of DeFi applications, and suc-

cessfully protected digital assets that are worth more than 5 million dollars by blocking multiple attacks.

They can be reached at Email, Twitter and Medium.

ii

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Rust and Solidity
Approach Semi-automatic and manual verification

The repositories that are audited in this report include the following ones.

Repo Name Github URL
NearX Exchange Rate Feed https://github.com/stader-labs/nearx-exchange-rate-feed
NearX Aurora https://github.com/stader-labs/nearx-aurora

The auditing process is iterative. Specifically, we will audit the commits that fix the discovered issues.

If there are new issues, we will continue this process. The commit SHA values during the audit are shown

in the following. Our audit report is responsible for the only initial version (Version 1), as well as new

codes (in the following versions) to fix issues in the audit report.

Project Commit SHA

NearX Exchange Rate Feed Contract
Version 1 5cca17305b80876590904cc9e42663df17c01d50
Version 2 8cc689c32c63f6c493d4a2518f54668f2c6688d2

NearX Aurora Staking Contract
Version 1 5a2e9e9ff82b85151104b3e0f88ce7f834889817
Version 2 19974e00abd0fe373d7a0b452cda3edc3c18fbb8

Note that, we did NOT audit all the modules in the repositories. The modules covered by this au-

dit report include nearx-exchange-rate-feed/near/contract/src folder contract, nearx-exchange-rate-
feed/aurora/contracts folder contract, and nearx-aurora/contracts/AuroraStaking.sol contract.

Specifically, the file covered in this audit include:

+ nearx-exchange-rate-feed/near/contract/src/

- contract/public.rs

- contract/upgrade.rs

- contract/utils.rs

- contract.rs

- errors.rs

- events.rs

- lib.rs

- state.rs

+ nearx-exchange-rate-feed/aurora/contracts/

- AuroraNearXRate.sol

+ nearx-aurora/contracts/

- AuroraStaking.sol

1

https://github.com/stader-labs/nearx-exchange-rate-feed
https://github.com/stader-labs/nearx-aurora

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation. It does not

consider, and should not be interpreted as considering or having any bearing on, the potential economics

of a token, token sale or any other product, service or other asset. Any entity should not rely on this report

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or

other asset.

This audit report is not an endorsement of any particular project or team, and the report does not

guarantee the security of any particular project. This audit does not give any warranties on discovering

all security issues of the smart contracts, i.e., the evaluation result does not guarantee the nonexistence

of any further findings of security issues. As one audit cannot be considered comprehensive, we always

recommend proceeding with independent audits and a public bug bounty program to ensure the security

of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explicitly specified,

the security of the language itself (e.g., the solidity language), the underlying compiling toolchain and the

computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.

- Vulnerability Detection We first scan smart contracts with automatic code analyzers, and then

manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further investiga-

tion on the possible vulnerabilities using an automatic fuzzing tool (developed by our research team).

We also manually analyze possible attack scenarios with independent auditors to cross-check the

result.

- Recommendation We provide some useful advice to developers from the perspective of good

programming practice, including gas optimization, code style, and etc.

We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy

∗ DoS

∗ Access control

∗ Data handling and data flow

∗ Exception handling

∗ Untrusted external call and control flow

∗ Initialization consistency

∗ Events operation

∗ Error-prone randomness

∗ Improper use of the proxy system

2

1.3.2 DeFi Security

∗ Semantic consistency

∗ Functionality consistency

∗ Permission management

∗ Business logic

∗ Token operation

∗ Emergency mechanism

∗ Oracle security

∗ Whitelist and blacklist

∗ Economic impact

∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item

∗ Verification of the token receiver

∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization

∗ Code quality and style
�

Note The previous checkpoints are the main ones. We may use more checkpoints during the auditing

process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by both industry

and academy, including OWASP Risk Rating Methodology 1 and Common Weakness Enumeration 2. The

overall severity of the risk is determined by likelihood and impact. Specifically, likelihood is used to estimate

how likely a particular vulnerability can be uncovered and exploited by an attacker, while impact is used to

measure the consequences of a successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low respec-

tively, and their combinations are shown in Table 1.1.

Accordingly, the severity measured in this report are classified into three categories: High, Medium,

Low. For the sake of completeness, Undetermined is also used to cover circumstances when the risk

cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four categories:

- Undetermined No response yet.

- Acknowledged The item has been received by the client, but not confirmed yet.

- Confirmed The item has been recognized by the client, but not fixed yet.

1https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

2https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Table 1.1: Vulnerability Severity Classification
Im

pa
ct

High High Medium

Low Medium Low

High Low

Likelihood

- Fixed The item has been confirmed and fixed by the client.

4

Chapter 2 Findings

In total, we find two potential issues. We have eleven recommendations and two notes.

- High Risk: 0

- Medium Risk: 0

- Low Risk: 2

- Recommendations: 11

- Notes: 2

ID Severity Description Category Status
1 Low Missed Sanity Check on the Withdrawal wNear DeFi Security Fixed
2 Low Missed Sanity Check on nearXSwapLockPeriod DeFi Security Fixed
3 - Missed Sanity Check in set_owner() Recommendation Fixed

4 -
Missed Sanity Check in get_aurora_contract_-
address()

Recommendation Fixed

5 -
Missed Sanity Check When Setting Privileged Ac-
counts

Recommendation Fixed

6 - Meaningless Event Emission Recommendation Fixed
7 - Lack of Event Emission in call_aurora() Recommendation Fixed
8 - Improper Usage of the Macro #[private] Recommendation Fixed
9 - Potential Centralization Problem (I) Recommendation Confirmed
10 - Potential Centralization Problem (II) Recommendation Confirmed

11 -
Check Zero Address in setAuroraNearXRateAd-
dress()

Recommendation Fixed

12 - Follow the Check-Effect-Interactions Best Practice Recommendation Fixed
13 - Unused State Variables Recommendation Fixed
14 - Delayed NearX Rate Notes Confirmed
15 - Timely Pushing the NearX Rate Notes Confirmed

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Missed Sanity Check on the Withdrawal wNear

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description In the AuroraStaking contract, wNearCollectedFees and claimedWNear are used to store

the admin fees and the users’ unstaked wNear, respectively.

176 /// @dev Requested exchange NearX for wNear.
177 /// User can call claimSwapNearXForWNear after nearXSwapLockPeriod
178 /// @param _nearXAmount amount of NearX to be requested for swap.
179 function requestSwapNearXForWNear(uint256 _nearXAmount)
180 external
181 nonReentrant

5

182 returns (uint256)
183 {
184 uint256 nearXRate = getNearXRate();
185 uint256 wNearAmount = (_nearXAmount * nearXRate) / EXPONENT_24;
186 uint256 feeAmount = (wNearAmount * wNearToNearXFee) / RATE_CONVERTION;
187 wNearAmount -= feeAmount;
188

189 require(
190 wNear.balanceOf(address(this)) - claimedWNear >= wNearAmount,
191 "Not enough wNEAR in the pool"
192);
193

194 nearX.safeTransferFrom(msg.sender, address(this), _nearXAmount);
195 wNearCollectedFees += feeAmount;
196 claimedWNear += wNearAmount;
197 userNearXSwapRequests[msg.sender].push(
198 NearXSwapRequest(
199 wNearAmount,
200 block.timestamp,
201 block.timestamp + nearXSwapLockPeriod
202)
203);
204 uint256 idx = userNearXSwapRequests[msg.sender].length - 1;
205 emit RequestSwapNearXForWNear(
206 msg.sender,
207 _nearXAmount,
208 wNearAmount,
209 feeAmount,
210 idx
211);
212 return idx;
213 }

Listing 2.1: nearx-aurora/contracts/AuroraStaking.sol

In this case, the contract has to reserve enough wNear (i.e., claimedWNear) for users. However, the

current implementation allows the admin to withdraw all the wNear tokens, resulting in the assets loss of

the other users. Meanwhile, there is no check on whether the withdrawn wNear is the collected fees, which

can be kept by the admin.

303 /// @dev Withdraw wNear pool. Locked for Admin role only
304 /// @param _wNearAmount amount of wNear to withdraw
305 function withdrawWNear(uint256 _wNearAmount)
306 external
307 onlyRole(DEFAULT_ADMIN_ROLE)
308 nonReentrant
309 {
310 require(
311 wNear.balanceOf(address(this)) >= _wNearAmount,
312 "Not enough wNEAR in the pool"
313);
314

315 if (_wNearAmount >= wNearCollectedFees) {

6

316 wNearCollectedFees = 0;
317 } else {
318 wNearCollectedFees -= _wNearAmount;
319 }
320

321 wNear.safeTransfer(msg.sender, _wNearAmount);
322 }

Listing 2.2: nearx-aurora/contracts/AuroraStaking.sol

Impact There may be no enough wNear for users to claim and the collected fees are mixed with the

unstaked wNear.

Suggestion Add a function for withdrawing fees only and limit the maximum withdrawal amount in func-

tion withdrawWNear().

2.1.2 Missed Sanity Check on nearXSwapLockPeriod

Severity Low

Status Fixed in Version 2

Introduced by Version 1

Description In the AuroraStaking contract, there is a lockup period after users unstake their NearX

tokens to get wNear tokens, which is specified by nearXSwapLockPeriod. The setNearXSwapLockPeriod

checks the upper bound of this variable but misses the lower bound.

244 /// @dev Set lock period for withdraw wNear
245 /// @param _hours time that should pass before user can claim wNear after

requestSwapNearXForWNear
246 function setNearXSwapLockPeriod(uint256 _hours)
247 external
248 onlyRole(OPERATOR_ROLE)
249 {
250 require(_hours <= 720, "_hours must not exceed 720 (1 month)");
251

252 nearXSwapLockPeriod = _hours * 1 hours;
253

254 emit SetNearXSwapLockPeriodEvent(_hours);
255 }

Listing 2.3: nearx-aurora/contracts/AuroraStaking.sol

Impact A short nearXSwapLockPeriod allows attackers to temporarily make the wNear balance of the

pool extremely low, resulting in a potential balance bias problem.

Suggestion Set a reasonable lower bound for nearXSwapLockPeriod.

2.2 Additional Recommendation

2.2.1 Missed Sanity Check in set_owner()

Status Fixed in Version 2

7

Introduced by Version 1

Description In the Exchange Rate Feed contract, there are checks to ensure that the NearXPusher.owner-

_account_id is different from the NearXPusher.operator_account_id in both function new() and function

set_operator(). However, there is no such check in the function set_owner().

24 #[init]
25 pub fn new(
26 owner_account_id: AccountId,
27 operator_account_id: AccountId,
28 nearx_account_id: AccountId,
29 aurora_contract_id: String,
30) -> Self {
31 require!(
32 owner_account_id != operator_account_id,
33 ERROR_OWNER_OPERATOR_CANNOT_BE_SAME
34);
35

36 Self {
37 owner_account_id,
38 operator_account_id,
39 nearx_account_id,
40 aurora_contract_id: get_aurora_contract_address(&aurora_contract_id),
41 temp_owner: None,
42 temp_operator: None,
43 }
44 }

Listing 2.4: nearx-exchange-rate-feed/near/src/contract/public.rs

183 #[payable]
184 pub fn set_operator(&mut self, new_operator_id: AccountId) {
185 assert_one_yocto();
186 self.assert_owner_calling();
187

188 require!(
189 new_operator_id != self.owner_account_id,
190 ERROR_OWNER_OPERATOR_CANNOT_BE_SAME
191);
192

193 self.temp_operator = Some(new_operator_id.clone());
194

195 Event::SetOperator {
196 old_operator_id: self.operator_account_id.clone(),
197 new_operator_id,
198 }
199 .emit();
200 }

Listing 2.5: nearx-exchange-rate-feed/near/src/contract/public.rs

119 // Owner update methods
120 #[payable]
121 pub fn set_owner(&mut self, new_owner: AccountId) {

8

122 assert_one_yocto();
123 self.assert_owner_calling();
124

125 self.temp_owner = Some(new_owner.clone());
126 Event::SetOwner {
127 old_owner: self.owner_account_id.clone(),
128 new_owner,
129 }
130 .emit();
131 }

Listing 2.6: nearx-exchange-rate-feed/near/src/contract/public.rs

Suggestion Add the check to ensure that the new_owner account is different from the operator account

in function set_owner().

2.2.2 Missed Sanity Check in get_aurora_contract_address()

Status Fixed in Version 2

Introduced by Version 1

Description In the Exchange Rate Feed contract, function get_aurora_contract_address() returns the

input parameter aurora_contract_id with the first two bytes removed. However, it only verifies that the

input is 42 bytes long and starts with 0x, but does not check whether the last 40 bytes are all hexadecimal

characters.

22 pub fn get_aurora_contract_address(aurora_contract_id: &String) -> String {
23 require!(aurora_contract_id.len() == 42, ERROR_AURORA_ADDRESS);
24 require!(aurora_contract_id.starts_with("0x"), ERROR_AURORA_ADDRESS);
25 aurora_contract_id[2..].to_string()
26 }

Listing 2.7: nearx-exchange-rate-feed/near/contract/src/contract/util.rs

Suggestion It is recommended to invoke the function hex::decode() to ensure that the input parameter

aurora_contract_id is a valid hexadecimal string.

2.2.3 Missed Sanity Check When Setting Privileged Accounts

Status Fixed in Version 2

Introduced by Version 1

Description NearXPusher.owner_account_id, NearXPusher.operator_account_id, and env::current_-

account_id() are all privileged accounts for the Exchange Rate Feed contract. However, when setting the

owner and operator, there is no check on whether they are different from the env::current_account_id()

in the functions listed below. This may lead to a centralization problem.

24 #[init]
25 pub fn new(
26 owner_account_id: AccountId,
27 operator_account_id: AccountId,
28 nearx_account_id: AccountId,

9

29 aurora_contract_id: String,
30) -> Self {
31 require!(
32 owner_account_id != operator_account_id,
33 ERROR_OWNER_OPERATOR_CANNOT_BE_SAME
34);
35

36 Self {
37 owner_account_id,
38 operator_account_id,
39 nearx_account_id,
40 aurora_contract_id: get_aurora_contract_address(&aurora_contract_id),
41 temp_owner: None,
42 temp_operator: None,
43 }
44 }

Listing 2.8: nearx-exchange-rate-feed/near/src/contract/public.rs

183 #[payable]
184 pub fn set_operator(&mut self, new_operator_id: AccountId) {
185 assert_one_yocto();
186 self.assert_owner_calling();
187

188 require!(
189 new_operator_id != self.owner_account_id,
190 ERROR_OWNER_OPERATOR_CANNOT_BE_SAME
191);
192

193 self.temp_operator = Some(new_operator_id.clone());
194

195 Event::SetOperator {
196 old_operator_id: self.operator_account_id.clone(),
197 new_operator_id,
198 }
199 .emit();
200 }

Listing 2.9: nearx-exchange-rate-feed/near/src/contract/public.rs

119 // Owner update methods
120 #[payable]
121 pub fn set_owner(&mut self, new_owner: AccountId) {
122 assert_one_yocto();
123 self.assert_owner_calling();
124

125 self.temp_owner = Some(new_owner.clone());
126 Event::SetOwner {
127 old_owner: self.owner_account_id.clone(),
128 new_owner,
129 }
130 .emit();
131 }

10

Listing 2.10: nearx-exchange-rate-feed/near/src/contract/public.rs

Suggestion Ensure that the owner account, operator account and the contract account are different

when setting any of them.

2.2.4 Meaningless Event Emission

Status Fixed in Version 2

Introduced by Version 1

Description In the Exchange Rate Feed contract, the events emitted in function commit_owner() and

function commit_operator() are meaningless. Take the event CommitOwner as an example (lines 144 -

147), the new_owner and the caller are always the same due to the check in lines 138 - 141.

133 #[payable]
134 pub fn commit_owner(&mut self) {
135 assert_one_yocto();
136

137 if let Some(temp_owner) = self.temp_owner.clone() {
138 require!(
139 env::predecessor_account_id() == temp_owner,
140 ERROR_UNAUTHORIZED
141);
142 self.owner_account_id = self.temp_owner.as_ref().unwrap().clone();
143 self.temp_owner = None;
144 Event::CommitOwner {
145 new_owner: self.owner_account_id.clone(),
146 caller: env::predecessor_account_id(),
147 }
148 .emit();
149 } else {
150 panic!("{}", ERROR_TEMP_OWNER_NOT_SET);
151 }
152 }

Listing 2.11: nearx-exchange-rate-feed/near/contract/src/contract/public.rs

202 #[payable]
203 pub fn commit_operator(&mut self) {
204 assert_one_yocto();
205

206 if let Some(temp_operator) = self.temp_operator.clone() {
207 require!(
208 env::predecessor_account_id() == temp_operator,
209 ERROR_UNAUTHORIZED
210);
211 self.operator_account_id = temp_operator;
212 self.temp_operator = None;
213

214 Event::CommitOperator {
215 new_operator_id: self.operator_account_id.clone(),

11

216 caller: env::predecessor_account_id(),
217 }
218 .emit();
219 } else {
220 require!(false, ERROR_TEMP_OPERATOR_NOT_SET);
221 }
222 }

Listing 2.12: nearx-exchange-rate-feed/near/contract/src/contract/public.rs

Suggestion It is recommended to emit meaningful events in the above functions.

2.2.5 Lack of Event Emission in call_aurora()

Status Fixed in Version 2

Introduced by Version 1

Description Meaningful events are an important part of smart contract design as they can greatly expose

the runtime statistics and support the off-chain analysis. In the Exchange Rate Feed contract, there is no

such event emitted in function call_aurora() to record the rate of NearX.

87 #[private]
88 pub fn call_aurora(&self, price: u128) {
89 require!(env::promise_results_count() == 1);
90

91 let mut aurora_contract_id = [0u8; 20];
92 hex::decode_to_slice(&self.aurora_contract_id, &mut aurora_contract_id).unwrap();
93

94 let aurora_set_rate_function = NEAR_SET_RATE_FUNCTION_STR;
95 let data: Vec<u8> = aurora_set_rate_function
96 .into_iter()
97 .chain(vec![0u8; 16])
98 .chain(price.to_be_bytes())
99 .collect();

100

101 let input = FunctionCallArgsV1 {
102 contract: aurora_contract_id,
103 input: data,
104 }
105 .try_to_vec()
106 .unwrap();
107

108 let promise0 = env::promise_create(
109 "aurora".parse().unwrap(),
110 "call",
111 input.as_ref(),
112 0,
113 SINGLE_CALL_GAS,
114);
115

116 env::promise_return(promise0);
117 }

12

Listing 2.13: nearx-exchange-rate-feed/near/contract/src/contract/public.rs

Suggestion It’s recommended to emit an event in function call_aurora() to record the rate of NearX

each time it is pushed to Aurora.

2.2.6 Improper Usage of the Macro #[private]

Status Fixed in Version 2

Introduced by Version 1

Description For the Exchange Rate Feed contract, functions decorated with macro #[private] are usu-

ally the callbacks of cross-contract invocations, which means that these functions should only be called by

the contract itself. However, the internal function call_aurora() that is not a callback is decorated with the

#[private] macro, which is improper.

87 #[private]
88 pub fn call_aurora(&self, price: u128) {
89 require!(env::promise_results_count() == 1);
90

91 let mut aurora_contract_id = [0u8; 20];
92 hex::decode_to_slice(&self.aurora_contract_id, &mut aurora_contract_id).unwrap();
93

94 let aurora_set_rate_function = NEAR_SET_RATE_FUNCTION_STR;
95 let data: Vec<u8> = aurora_set_rate_function
96 .into_iter()
97 .chain(vec![0u8; 16])
98 .chain(price.to_be_bytes())
99 .collect();

100

101 let input = FunctionCallArgsV1 {
102 contract: aurora_contract_id,
103 input: data,
104 }
105 .try_to_vec()
106 .unwrap();
107

108 let promise0 = env::promise_create(
109 "aurora".parse().unwrap(),
110 "call",
111 input.as_ref(),
112 0,
113 SINGLE_CALL_GAS,
114);
115

116 env::promise_return(promise0);
117 }

Listing 2.14: nearx-exchange-rate-feed/near/contract/src/contract/public.rs

Suggestion It is recommended to remove the macro #[private] and the function-visibility-modifier pub

to make the function call_aurora() internal.

13

2.2.7 Potential Centralization Problem (I)

Status Confirmed

Introduced by Version 1

Description The Exchange Rate Feed contract has potential centralization problems. The NearXPusher.-

owner_account_id has the privilege to set the external contract addresses that interact with this contract

(i.e., nearx_account_id and aurora_contract_id), set the privileged account (i.e., operator_account_id),

and upgrade the contract.

Suggestion It is recommended to introduce a decentralization design in the contract, such as a a public

DAO or multi-signature.

Feedback from the Project owner will be multi-signature.

2.2.8 Potential Centralization Problem (II)

Status Confirmed

Introduced by Version 1

Description The AuroraStaking contract has potential centralization problems. The admin has the privi-

lege to withdraw all the wNear tokens in the contract.

303 /// @dev Withdraw wNear pool. Locked for Admin role only
304 /// @param _wNearAmount amount of wNear to withdraw
305 function withdrawWNear(uint256 _wNearAmount)
306 external
307 onlyRole(DEFAULT_ADMIN_ROLE)
308 nonReentrant
309 {
310 require(
311 wNear.balanceOf(address(this)) >= _wNearAmount,
312 "Not enough wNEAR in the pool"
313);
314

315 if (_wNearAmount >= wNearCollectedFees) {
316 wNearCollectedFees = 0;
317 } else {
318 wNearCollectedFees -= _wNearAmount;
319 }
320

321 wNear.safeTransfer(msg.sender, _wNearAmount);
322 }

Listing 2.15: nearx-aurora/contracts/AuroraStaking.sol

Suggestion It is recommended to introduce a decentralization design in the contract, such as a a public

DAO or multi-signature.

Feedback from the Project Admin and Manager roles will be multi-sig.

14

2.2.9 Check Zero Address in setAuroraNearXRateAddress()

Status Fixed in Version 2

Introduced by Version 1

Description In the AuroraStaking contract, function setAuroraNearXRateAddress() sets the auroraNear-

XRateAddress variable, which is the contract address for retrieving current rates between NearX and wNear

token. However, the auroraNearXRateAddress is not checked against zero address.

257 /// @dev Set address of the Aurora nearXRate feeding contract. Locked for Operator role only
258 /// @param _auroraNearXRateAddress Address of the Aurora nearXRate feeding contract
259 function setAuroraNearXRateAddress(address _auroraNearXRateAddress)
260 external
261 onlyRole(OPERATOR_ROLE)
262 {
263 emit SetAuroraNearXRateAddress(
264 auroraNearXRateAddress,
265 _auroraNearXRateAddress
266);
267

268 auroraNearXRateAddress = _auroraNearXRateAddress;
269 }

Listing 2.16: nearx-aurora/contracts/AuroraStaking.sol

Suggestion Check whether the auroraNearXRateAddress is zero address when it is set.

2.2.10 Follow the Check-Effect-Interactions Best Practice

Status Fixed in Version 2

Introduced by Version 1

Description In function swapWNearForNearX of contract AuroraStaking, the nearXCollectedFees is up-

dated after transferring the tokens, which violates the Check-Effect-Interactions best practice.

152 /// @dev Exchange wNear for NearX
153 /// @param _wNearAmount amount of wNear to be swapped.
154 function swapWNearForNearX(uint256 _wNearAmount) external nonReentrant {
155 uint256 nearXRate = getNearXRate();
156 uint256 nearXAmount = (_wNearAmount * (EXPONENT_24)) / nearXRate;
157 uint256 feeAmount = (nearXAmount * nearXToWNearFee) / RATE_CONVERTION;
158 nearXAmount -= feeAmount;
159

160 require(
161 nearX.balanceOf(address(this)) >= nearXAmount,
162 "Not enough NearX in the pool"
163);
164

165 wNear.safeTransferFrom(msg.sender, address(this), _wNearAmount);
166 nearX.safeTransfer(msg.sender, nearXAmount);
167 nearXCollectedFees += feeAmount;
168 emit SwapWNearForNearX(
169 msg.sender,

15

170 _wNearAmount,
171 nearXAmount,
172 feeAmount
173);
174 }

Listing 2.17: nearx-aurora/contracts/AuroraStaking.sol

Suggestion Refact the code to follow the Check-Effect-Interactions best practice.

2.2.11 Unused State Variable

Status Fixed in Version 2

Introduced by Version 1

Description In the AuroraStaking contract, The decimals state variable is not used.

Suggestion Remove the unused state variable.

2.3 Notes

2.3.1 Delayed NearX Rate

Status Confirmed

Introduced by Version 1

Description Given the async nature of NEAR protocol, one transaction on NEAR protocol may be executed

in several blocks. Therefore, it should be noted that the rate of NearX pushed to Aurora would not be the

latest for the Exchange Rate Feed contract.

Feedback from the Project Exchange rate is updated on 2 occasions only in an epoch for autocom-

pounding and boosted rewards addition. We are currently planning to call the push_nearx_rate_to_aurora

method every 10mins when we launch. This will ensure that the rate is always accurate, since we auto-

compound once an epoch (rewards are accrued only once an epoch) and boost rewards once a day

currently.

2.3.2 Timely Pushing the NearX Rate

Status Confirmed

Introduced by Version 1

Description In the Exchange Rate Feed contract, function push_nearx_rate_to_aurora() is used to push

the latest rate of NearX from NEAR’s mainnet to Aurora. It’s important for the team to make sure that the

function will be triggered by the operator timely.

Feedback from the Project We will ensure that it is timely triggered by us. Going forward we will cons-

ider opening up a method to be public once the product reaches a certain level of stability.

16

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Missed Sanity Check on the Withdrawal wNear
	2.1.2 Missed Sanity Check on nearXSwapLockPeriod

	2.2 Additional Recommendation
	2.2.1 Missed Sanity Check in set_owner()
	2.2.2 Missed Sanity Check in get_aurora_contract_address()
	2.2.3 Missed Sanity Check When Setting Privileged Accounts
	2.2.4 Meaningless Event Emission
	2.2.5 Lack of Event Emission in call_aurora()
	2.2.6 Improper Usage of the Macro #[private]
	2.2.7 Potential Centralization Problem (I)
	2.2.8 Potential Centralization Problem (II)
	2.2.9 Check Zero Address in setAuroraNearXRateAddress()
	2.2.10 Follow the Check-Effect-Interactions Best Practice
	2.2.11 Unused State Variable

	2.3 Notes
	2.3.1 Delayed NearX Rate
	2.3.2 Timely Pushing the NearX Rate

		2022-10-19T10:56:48+0800
	BlockSec Audit Team

