
Stader Labs

MaticX

Smart Contract Audit
Final Report

April 25, 2022



Introduction 3
About Stader Labs 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level Reference 5
High Severity Issues 6
Medium Severity Issues 6
Low Severity Issues 7

Recommendation / Informational 9

Unit Tests 10

Test Coverage 12

Automated Audit Result 13
Maian 13
Mythril 13
MythX 14
Slither 15

Concluding Remarks 16

Disclaimer 16

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

2



Introduction

1. About Stader Labs
Stader is building the key staking middleware infrastructure layer for multiple PoS networks that will
power the above staking-related opportunities while solving the key challenges. We are taking an
extremely modular approach to building our contracts so third parties can leverage our components to
build several staking solutions on top of it.

In the short term, Stader is building native staking smart contracts across multiple chains including
Terra, and Solana, among others, and building an economic ecosystem to grow and develop solutions
like YFI-style farming with rewards, launchpads, gaming with rewards, liquid staking solutions, and
more.

In the long term, Stader is focused on unlocking the platform approach and nurturing third parties to
develop several staking-related applications on top of Stader infrastructure.

Visit https://staderlabs.com/ to know more about it.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provides professional services in the blockchain space. The team
has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and have a
great understanding of DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, and dydx.

The team has been able to secure 105+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-ups with a detailed analysis of the system ensuring security
and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The Stader Labs team has provided the following doc for the purpose of audit:

1. https://staderlabs-docs.s3.amazonaws.com/Stader_Litepaper.pdf
2. https://github.com/stader-labs/maticX#readme

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

3

https://staderlabs.com/
http://immunebytes.com/
https://staderlabs-docs.s3.amazonaws.com/Stader_Litepaper.pdf
https://github.com/stader-labs/maticX#readme


Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any potential
issues like Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable
Shadowing, Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and
others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs and

vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: Stader Labs
● Contracts Name: MaticX.sol, ValidatorRegistry.sol
● Languages: Solidity(Smart contract), Typescript (Unit Testing)
● Github commits for initial audit: 85023fa73a1325d0794dd3097a7efcbad72379bd
● Github commits for final audit: 8f914608ae40fdb35cfae281ff6c1dda9943b632
● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,

Slither, SmartCheck

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

4

https://github.com/stader-labs/maticX/blob/main/contracts/MaticX.sol
https://github.com/stader-labs/maticX/blob/main/contracts/ValidatorRegistry.sol
https://github.com/stader-labs/maticX/commit/8f914608ae40fdb35cfae281ff6c1dda9943b632


Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart

contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level Reference
Every issue in this report were assigned a severity level from the following:

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some

point in the future.

Issues High Medium Low

Open - - -

Closed 1 1 3

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

5



High Severity Issues

1. Missing Authentication
Contract: Missing implementation of contracts (state Manager and Validator share)

Description:
As there are external calls to the missing contracts so the contract methods which are dependent on
external calls will fail.

Recommendation:
Add missing implementation

Status: Acknowledged

Note by the team:
Both stakeManager and validatorShare contracts are implemented and deployed by Polygon. We only
use the interface contract to interact with it.

Medium Severity Issues

1. Contract:
MaticX.sol

Description:
The reentrancy guard is missing in the MaticX.requestWithdraw.

The state variable is written after the external call of validatorRegistry.setLastWithdrawnValidatorId.

Recommendation:
Create or Import a nonRentrancy guard from OpenZeppelin and apply it to the method.

Status: Closed

Note by the team:
It is calling _burn function after the validatorRegistry.setLastWithdrawnValidatorId function call and
validatorRegistry contract is our own contract. We can add reentrancy guard which will increase our gas
cost but we don't see an issue unless our manager role gets hacked and the hacker changes the
validatorRegistry contract address which itself is a separate concern. Please give us more details on
reproducing this issue.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

6



Low Severity Issues

1. Contract:
MaticX.sol

Description:
The rescue function for the by mistake sent funds is missing in the contract.

If a user sends the funds by mistake to the contract then there is no way to pull the funds out by the
admin and give it back to the user.

Recommendation:
We recommend a rescue funds method which is only operated by Admin.

Status: Acknowledged

Note by the team:
As of now we believe it is a user fault that is similar to sending tokens to a wrong address and is a nice
to have feature which can be included later when it becomes a major issue.

2. Gas optimizations
Contract: MaticX.sol, ValidatorRegistry.sol

Description:
In for loop on line 186 (MaticX) and 111 (Validator Registry) the .length is calculated again and again in
the for loop which will use a SLOAD operation on each iteration

Recommendation:
We recommend calculating the length and store it in a variable and use that variable in the food loop
iteration.

Status: Closed

Amended: Issue was fixed by the Stader Labs team and is no longer present in commit
8f914608ae40fdb35cfae281ff6c1dda9943b632

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

7

https://github.com/stader-labs/maticX/commit/8f914608ae40fdb35cfae281ff6c1dda9943b632


3. Address zero check missing
Contract: MaticX.sol, ValidatorRegistry.sol

Description:
Zero check is missing in the input parameters.

functions : MaticX.initialize, MaticX.setTreasuryAddress, ValidatorRegistry.initialize,
MaticX.setValidatorRegistry, ValidatorRegistry.setMaticX,

Recommendation:
We recommend including zero check.

Status: Acknowledged

Note by the team:
Since we can recall this functions if we were to mistakenly set it to address(0), we believe it is not worth
adding an additional check for it.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

8



Recommendation / Informational
1. Log emit missing

Contract: MaticX.sol

Description:
Whenever the state of the contract gets changed then their event should be admitted.
Some functions are missing the emitting of logs.

For eg: setValidatorRegistry, setVersion, setTreasury, setFees, setMaticX, setVersion

Recommendation:
At the time of state change events should be emitted properly.

Status: Closed

Amended: Issue was fixed by the Stader Labs team and is no longer present in commit
8f914608ae40fdb35cfae281ff6c1dda9943b632

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

9

https://github.com/stader-labs/maticX/commit/8f914608ae40fdb35cfae281ff6c1dda9943b632


Unit Tests

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

10



This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

11



Test Coverage

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

12



Automated Audit Result

Maian

Mythril

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

13



MythX

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

14



Slither

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

15



Concluding Remarks
While conducting the audits of the Stader Labs smart contracts, it was observed that the contracts contain
High, Medium, and Low severity issues.

Our auditors suggest that High, Medium, and Low severity issues should be resolved by the developers. The
recommendations given will improve the operations of the smart contract.

Note: Stader Labs team has Acknowledged/fixed the issues based on the auditor’s recommendation.
The bitcciCash does not have any issues present in the contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the Stader Labs platform or its product nor this audit is investment advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

16


